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In this paper, we propose new lower and upper bounds on the 
linear extension complexity of regular n-gons. Our bounds 
are based on the equivalence between the computation of 
(i) an extended formulation of size r of a polytope P , and 
(ii) a rank-r nonnegative factorization of a slack matrix of the 
polytope P . The lower bound is based on an improved bound 
for the rectangle covering number (also known as the boolean 
rank) of the slack matrix of the n-gons. The upper bound is 
a slight improvement of the result of Fiorini, Rothvoss and 
Tiwary (2012) [9]. The difference with their result is twofold: 
(i) our proof uses a purely algebraic argument while Fiorini 
et al. used a geometric argument, and (ii) we improve the 
base case allowing us to reduce their upper bound 2 �log2(n)�
by one when 2k−1 < n ≤ 2k−1 + 2k−2 for some integer k. 
We conjecture that this new upper bound is tight, which is 
suggested by numerical experiments for small n. Moreover, 
this improved upper bound allows us to close the gap with the 
best known lower bound for certain regular n-gons (namely, 

* Corresponding author.
E-mail addresses: arnaud.vandaele@umons.ac.be (A. Vandaele), nicolas.gillis@umons.ac.be (N. Gillis), 

francois.glineur@uclouvain.be (F. Glineur).
1 NG acknowledges the support of the F.R.S-FNRS (incentive Grant for Scientific Research No. F.4501.16) 

and of the ERC (Starting Grant No. 679515).
2 This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and 

Optimization), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, 
Science Policy Office, and of the Concerted Research Action (ARC) programme supported by the Federation 
Wallonia–Brussels (contract ARC 14/19-060). The scientific responsibility rests with its authors.
http://dx.doi.org/10.1016/j.laa.2016.12.023
0024-3795/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.laa.2016.12.023
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:arnaud.vandaele@umons.ac.be
mailto:nicolas.gillis@umons.ac.be
mailto:francois.glineur@uclouvain.be
http://dx.doi.org/10.1016/j.laa.2016.12.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2016.12.023&domain=pdf


218 A. Vandaele et al. / Linear Algebra and its Applications 521 (2017) 217–239
9 ≤ n ≤ 13 and 21 ≤ n ≤ 24) hence allowing for the first time 
to determine their extension complexity.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

An extended formulation (or extension) for a polytope P is a higher dimensional 
polyhedron Q such that there exists a linear map π with π(Q) = P . The size of such 
an extended formulation is defined as the number of facets of the polyhedron Q. The 
size of the smallest possible extension of P is called the (linear) extension complexity of 
P and is denoted xc(P ). The quantity xc(P ) is of great importance since it character-
izes the minimum information necessary to represent P . In particular, in combinatorial 
optimization, it characterizes the minimum size necessary to represent a problem as a 
linear programming problem (taking P as the convex hull of the set of feasible solutions). 
Hence although P might have exponentially many facets, Q might only have polynomi-
ally many, providing a way to solve linear programs over P much more effectively. An 
example of such a polytope is the permutahedron, that is, the convex hull of all permu-
tations of the set {1, 2, . . . , n} with n! vertices and 2n−2 facet-defining inequalities, that 
can be represented as the projection of a polyhedron with O(n log(n)) facets [12].

The characterization of the extension complexity has attracted much interest recently; 
in particular lower bounds have been investigated since they provide provable limits of 
linear programming to solve combinatorial optimization problems; see, e.g., [8]. For ex-
ample, it was recently shown that the extension complexity of the matching polytope 
is exponential (in the number of vertices of the graph), answering a long-standing open 
question about the existence of a polynomial-size linear programming formulation for the 
matching problem [20], which implies that although it is solvable in polynomial time, the 
standard formulation cannot be written as a linear program with a polynomial number 
of inequalities.

Interestingly, most lower bounds for the extension complexity of polytopes are based 
on a well-known linear algebra concept: the nonnegative rank. The nonnegative rank 
of a nonnegative m-by-n matrix M , denoted rank+(M), is the minimum r such that 
there exist a nonnegative m-by-r matrix U and a nonnegative r-by-n matrix V such 
that M = UV . The pair (U, V ) is a rank-r nonnegative factorization of M . The link 
between the nonnegative rank and the extension complexity of a polytope, a semi-
nal result of Yannakakis [24], goes as follows. Let P be a polytope in dimension d
with

• f facets expressed as linear inequalities aTi x ≤ bi, 1 ≤ i ≤ f , and
• v vertices denoted xj ∈ R

d, 1 ≤ j ≤ v.
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The slack matrix SP ∈ R
f×v
+ of P is defined as

SP (i, j) = bi − aTi xj ≥ 0, for all 1 ≤ i ≤ f, 1 ≤ j ≤ v.

Note that the slack matrix of a polytope is not unique since the inequalities can be 
scaled, and the rows and columns permuted, but this does not influence its nonnegative 
rank; see [13] for more details. Note also that rank(SP ) = d + 1 if P is full dimensional. 
Then, we have according to [24] that

rank+(SP ) = xc(P ).

Moreover any nonnegative factorization (U, V ) ≥ 0 of SP = UV provides an explicit 
extended formulation for P (with some redundant equalities):

P = {x ∈ R
d | Ax ≤ b} = {x ∈ R

d | Ax + Uy = b and y ≥ 0},

where A ∈ R
f×d with A(i, :) = ai for all i, and b ∈ R

f . For example, the ma-
trix

S6 =

⎛
⎜⎜⎜⎜⎝

0 1 2 2 1 0
0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0

⎞
⎟⎟⎟⎟⎠

is a slack matrix of the regular hexagon (hence it has rank three) and has nonnegative 
rank equal to five:

S6 =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 2
0 1 0 0 1
0 1 1 0 0
0 0 2 1 0
1 0 1 0 0
1 0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 2 1 0 0 0
0 0 0 1 2 1
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0

⎞
⎟⎟⎟⎠ .

This implies that the regular hexagon can be described as the projection of a higher 
dimensional polytope with 5 facets; see Fig. 1 for an illustration. In this paper, we 
focus on the extension complexity of regular n-gons, and in particular on a new upper 
bound.

Extension complexity of regular n-gons In the remainder of this paper, we denote Sn

the slack matrix of the regular n-gon (more precisely, any slack matrix; see Section 2 for 
a construction), hence rank+(Sn) equals the extension complexity of the regular n-gon; 
see above. In the following, we describe several bounds for the nonnegative rank, focusing 
on the slack matrices of regular n-gons.
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Fig. 1. Minimum-size extension of the regular hexagon.

Lower bounds. There exist several approaches to derive lower bounds for the nonneg-
ative rank, which we classify in three classes:

• Geometric. Using a counting argument and the facts that (i) any face of a polytope is 
the projection of a face of its extension, and (ii) any face is an intersection of facets, 
it can be shown that rank+(Sn) ≥ �log2(2n + 2)� [12]. Based on a refined geometric 
counting argument, Gillis and Glineur [10] described a stronger lower bound for the 
slack matrix of polygons3: the nonnegative rank r+ = rank+(Sn) of Sn must satisfy

n ≤ max
3≤d≤r+−1

min
i=0,1

faces(r+, d− 1, d− 3 + i),

where the quantity faces(v, d, k) is the maximal number of k-faces of a polytope with 
v vertices in dimension d, attained by cyclic polytopes [18]; see also [25, p. 257, 
Corollary 8.28]. We have

faces(v, d, k − 1) =
d
2∑

i=0

∗
((

d− i

k − i

)
+

(
i

k − d + i

))(
v − d− 1 + i

i

)
,

where 
∑ ∗ denotes a sum where only half of the last term is taken for i = d

2 if d is 
even, and the whole last term is taken for i = �d

2� =
d−1
2 if d is odd. This bound can 

be generalized to any nonnegative matrix [10], but it becomes difficult to compute for 
non-slack matrices as it requires computing the restricted nonnegative rank, which is 
in general NP-hard (but is simply equal to the number of vertices for a slack matrix).

• Combinatorial. These bounds are based on the sparsity pattern of the input matrix. 
The most well-known one is the rectangle covering bound (RCB) that counts the 
minimum number of rectangles necessary to cover all positive entries of the matrix, 
a rectangle being a subset of rows and columns for which the corresponding submatrix 
contains only positive entries; see [7] and the references therein. Note that the RCB 

3 They actually derived this bound for linear Euclidean distance matrices, but it also applies to the slack 
matrix of polygons.
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is equal to the boolean rank; see, e.g., [4]. A closely related bound is the refined 
rectangle covering bound (RRCB) by Oelze, Vandaele, Weltge [19]: in addition to 
covering every positive entry by a rectangle, the RRCB requires that every 2-by-2 
nonsingular submatrix is touched by at least two rectangles (note that the same 
rectangle can be used twice). For example, the RCB for the matrix

S9 =
(1 2 0 3

4 5 6 0
7 8 9 0

)

is equal to two while the RRCB is equal to three. In fact, this matrix contains only 
three maximal rectangles (that is, rectangles not contained in any larger rectangle):

(1 1 0 0
1 1 0 0
1 1 0 0

)
,

(1 1 0 1
0 0 0 0
0 0 0 0

)
, and

(0 0 0 0
1 1 1 0
1 1 1 0

)
,

and only two of them are required to cover all positive entries (the last two, which is 
the unique solution) while three are necessary to touching twice all rank-two positive 

submatrices (which is tight since this is a 3-by-4 matrix), e.g., the block 
(

4 5
7 8

)
touched only once with the RCB solution.
Although these bounds can be rather strong in some cases, they are computationally 
very expensive, and only work well for matrices with ‘well located’ zero entries. For 
the slack matrices of the regular n-gons, we could compute them up to n = 13 (for 
larger n, it would take several weeks of computation with our current formulation).

• Convex Relaxations. Fawzi and Parrilo developed two lower bounds for the nonnega-
tive rank based on a sum-of-squares approximation of the copositive cone [5,6]. These 
bounds are very general as they can be computed for any nonnegative matrix; how-
ever they are typically weaker than the aforementioned lower bounds, in particular 
for slack matrices.

These bounds are compared for the regular n-gons in Fig. 2. We observe that the best 
lower bounds are the geometric bound from [10] and the rectangle covering bounds [7,19]
that coincide except for n = 9, 13 for which only the RRCB is tight (as it matches the 
best upper bound; see below).

Upper bounds. Ben-Tal and Nemirovski [3] gave an extension of the regular n-gons 
when n is a power of two (n = 2k for some k) with 2 log2(n) + 4 facets. They used this 
construction to approximate the circle with regular n-gons which allowed them to approx-
imate second-order cone programs with linear programs. This construction was slightly 
reduced to size 2 log2(n) in [11] (again, only for n = 2k). Kaibel and Pashkovich [16,15]
proposed a general construction for arbitrary n of size 2 �log2(n)�+ 2. Fiorini, Rothvoss 
and Tiwary [9] improved the bound to 2 �log2(n)�, which is, to the best of our knowl-
edge, the best known upper bound for regular n-gons. These last bounds are based on 
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Fig. 2. Comparison of lower and upper bounds for the nonnegative rank of the slack matrices of regular 
n-gons, that is, rank+(Sn). (Note that some bounds cannot be computed for all n because of their high 
computational cost.)

Table 1
Comparison of two lower bounds (first two rows) and our new upper bound (see Equation (1) on page 223) 
for the nonnegative rank of regular n-gons. Bold indicates the tight bounds, that is, bounds that coincide 
with the nonnegative rank.

n 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
RRCB [19] 5 6 6 7 7 7 7 8 ? ? ? ? ? ? ? ?
geometric [10] 5 6 6 6 7 7 7 7 7 8 8 8 8 8 8 9

Equation (1) 5 6 6 7 7 7 7 8 8 8 8 9 9 9 9 9

a geometric argument using successive reflections to construct the regular n-gon. Note 
that Shitov [21] proved an upper bound of 

⌈6n
7
⌉

for the nonnegative rank of any n-by-n
rank-three nonnegative matrix, hence also valid for the slack matrix of polygons.

As shown in Fig. 2, prior to our new upper bound, the exact value of rank+(Sn) is 
not known for most values of n larger than 9, as the best lower and upper bounds do not 
coincide. Therefore, the exact value of the extension complexity of many regular n-gons 
is still unknown.

Table 1 also gives the best upper and lower bounds for n up to 21.

Contribution of the paper In this paper, our contribution is mainly twofold. First, in 
Section 3, we derive an improved lower bound for the rectangle covering number r of the 
slack matrix of regular n-gons. We show that the following relation holds

n ≤ r − �r/2�
(

r
)
,

r − 1 �r/2�
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which improves over the best previously known relation given by n ≤
(

r
�r/2�

)
(see [4]). 

Although this new lower bound does not improve the best known lower bounds for the 
nonnegative rank of the slack matrices of regular n-gons (namely, the RRCB and the 
geometric bound; see previous paragraph), it is applicable to a broader class of matrices, 
namely those which have the same sparsity pattern as the slack matrices of n-gons. 
Moreover, it turns out to be a tight bound for the rectangle covering number, a.k.a. the 
boolean rank, for some n (comparing it with the upper bound from [1]).

Second, we slightly improve the upper bound of Fiorini, Rothvoss and Tiwary [9]. 
Although our approach is similar to that of Fiorini et al., both being recursive, our 
proof is rather different, being purely algebraic as opposed to their geometric approach. 
Moreover, we are able to reduce the upper bound by one when 2k−1 < n ≤ 2k−1 + 2k−2

for some k: this is possible by stopping the recursion earlier at a better base case (note 
that it would be possible to modify the proof of Fiorini et al. to achieve the same bound). 
We show that for all n ≥ 2,

rank+(Sn) ≤
{

2�log2(n)� − 1 = 2k − 1 for 2k−1 < n ≤ 2k−1 + 2k−2,

2�log2(n)� = 2k for 2k−1 + 2k−2 < n ≤ 2k.

(1)

Although the improvement is relatively minor, our numerical experiments strongly sug-
gest that this bound is tight; see the discussion at the end of Section 4. Moreover, 
our bound allows us to close the gap for several n-gons as it matches the best known 
lower bound. Indeed, our bound implies that rank+(Sn) = 7 for 9 ≤ n ≤ 12 and that 
rank+(Sn) = 9 for 21 ≤ n ≤ 24; see Fig. 2. (Note that the RRCB was, to the best of our 
knowledge, never computed for n = 13 prior to this work, hence it is also the first time 
rank+(Sn) = 8 is claimed for n = 13.)

The paper is organized as follows. In Section 2, we briefly describe the construction 
of the slack matrices of regular n-gons. In Section 3, we describe our new improved 
lower bound for the rectangle covering number of these matrices, and, in Section 4, we 
describe our construction that proves the aforementioned upper bound. Then we discuss 
some directions for further research and conclude in Section 5.

2. The slack matrices of regular n-gons

Let us construct the slack matrices of regular n-gons. Without loss of generality 
(w.l.o.g.), we use regular n-gons centered at the origin with their vertices located on 
the unit circle; see Fig. 3 for an illustration with the pentagon. The length s of the facets 
of the regular n-gon is given by s = 2 sin

(
π
n

)
. The slack between a facet and the kth 

vertex (the 0th and (n-1)th being on the considered facet, and counting along the circle 
in any direction) is equal to:

ck = cos
(π)− cos

(
(2k + 1)π

)
. (2)
n n
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Fig. 3. Illustration for the construction of the slack matrices of regular n-gons.

By symmetry, (i) our slack matrices of regular n-gons are circulant matrices for which 
the vector c is translated one element to the right on each row, and (ii) the vector c
satisfies ck = cn−1−k for all k. For example, for n = 9, we have

S9 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 c1 c2 c3 c4 c3 c2 c1 0
0 0 c1 c2 c3 c4 c3 c2 c1
c1 0 0 c1 c2 c3 c4 c3 c2
c2 c1 0 0 c1 c2 c3 c4 c3
c3 c2 c1 0 0 c1 c2 c3 c4
c4 c3 c2 c1 0 0 c1 c2 c3
c3 c4 c3 c2 c1 0 0 c1 c2
c2 c3 c4 c3 c2 c1 0 0 c1
c1 c2 c3 c4 c3 c2 c1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

Note that, to the best of our knowledge, the best known lower (resp. upper) bound for 
rank+(S9) is 7 (resp. 8). In this paper, we will improve the upper bound to 7 hence 
proving that rank+(S9) = 7; see Fig. 2.

3. Lower bound for the boolean rank of Sn

In this section, we improve the lower bound on the boolean rank (or, equivalently, 
the rectangle covering number) for regular n-gons. On the way, we derive several new 
interesting results that could be used to derive other bounds.

Given a nonnegative m-by-n matrix M , let U, V ≥ 0 be an exact nonnegative factor-
ization of M = UV of size r. In this section, we will use the following notation. Let us 
define the following subsets of {1, 2, . . . r}, representing the supports of the rows of U
and columns of V :

si = {k | Uik 	= 0}, 1 ≤ i ≤ m and tj = {k | Vkj 	= 0}, 1 ≤ j ≤ n.

Since Mij = U(i, :)V (:, j), U ≥ 0 and V ≥ 0, we have

Mij = 0 ⇐⇒ si ∩ tj = ∅. (4)
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If si ⊆ sl for some i, l, (4) implies that the sparsity pattern of the ith row of M is 
contained in the sparsity pattern of the lth row of M (and similarly for the columns). 
Therefore, if M contains p rows whose sparsity patterns are not contained in one another, 
there exist p subsets from si (1 ≤ i ≤ n) that form a Sperner family of size p, also known 
as an antichain of size p, which is a family of p sets that are not contained in one 
another [22]. By symmetry, the same holds for the columns.

3.1. Sperner’s theorem and rectangle covering

Sperner’s theorem bounds the size of an antichain over r elements. Let us recall this 
result and a proof that will be useful later.

Theorem 1. Let S = {s1, s2, . . . , sn} be a set of n subsets of {1, 2, . . . , r}. Suppose S is 
an antichain, that is, no subset in S is contained in another subset in S. Then,

n ≤
(

r

�r/2�

)
, (5)

and the bound is tight (take all subsets of size �r/2�).

Proof. ([17]) This proof is based on a counting argument using the fact that there are 
r! permutations of {1, 2, . . . , r}. Given si ∈ S with k elements, there are k!(r − k)!
permutations of {1, 2, . . . , r} whose first k elements are in si. Because the si’s are not 
contained in one another, the permutations generated for two different subsets si and sj
cannot coincide (otherwise this would imply that si ⊂ sj or sj ⊂ si). Let us also denote 
ak the number of sets with k elements contained in S, that is, ak = |{s ∈ S | |s| = k}|, 
hence n =

∑r
k=0 ak. We have

r∑
k=0

akk!(r − k)! ≤ r! .

Therefore,

n(
r

�r/2�
) =

r∑
k=0

ak(
r

�r/2�
) ≤

r∑
k=0

ak(
r
k

) =
r∑

k=0

ak
k!(r − k)!

r! ≤ 1,

since 
(

r
�r/2�

)
≥

(
r
k

)
for all k. This completes the proof. �

The above result was used to prove that the rectangle covering number of the n-by-n
Euclidean distance matrices (with zeros only the diagonal) is the minimum r such that 
n ≤

(
r

�r/2�
)
; see [2] and the references therein. This result can actually be generalized for 

any nonnegative matrix.



226 A. Vandaele et al. / Linear Algebra and its Applications 521 (2017) 217–239
Corollary 1 ([4]). Let M be a matrix having p rows or p columns whose sparsity patterns 
are not contained in one another. Then,

RCB(M) ≥ min
{
r
∣∣∣( r

�r/2�

)
≥ p

}
.

Proof. Let M have p rows with different sparsity patterns. As explained in the introduc-
tion of this section, this implies that there are p subsets of {1, 2, . . . , r} corresponding to 
the sparsity patterns of p rows of U that are not contained in one another. Theorem 1
allows to conclude. �

In particular, this result can be applied to the slack matrix of any polytope. In fact, 
the slack of two different vertices cannot be contained in one another, otherwise it would 
mean that a vertex is the intersection of a subset of the facets intersecting at another 
vertex. The same holds for two different facets by polar duality or a similar argument.

Corollary 2. Let M be the slack matrix of a polytope with f facets and v vertices. Then,

RCB(M) ≥ min
{
r
∣∣∣( r

�r/2�

)
≥ max(f, v)

}
.

Note that, the results from Corollaries 1 and 2 were already known prior to this work; 
see, e.g., [14, Cor. 4.13] for a more general result.

In the next section, we apply the same ideas to improve the lower bound for the 
rectangle covering number of the slack matrices of n-gons.

3.2. Improvement for n-gons

Let M be the slack matrix of a n-gon such that Mij = 0 if and only if i = j or 
i = (j + 1) mod n for 1 ≤ i, j ≤ n; see Section 2. To simplify the heavy notation mod n, 
we will assume throughout this section that i = 1 ≡ n + 1 when i represents an index. 
As before, let UV = M be a nonnegative factorization of size r of M , let si denote the 
support of the ith row of U (1 ≤ i ≤ n) and tj the support of the jth column of V
(1 ≤ j ≤ n). We have Mij = 0 if and only if i = j or i = j + 1, and

Mij = 0 ⇐⇒ si ∩ tj = ∅.

Let us try to characterize the size of the sets S = {s1, s2, . . . , sn} and T = {t1, t2, . . . , tn}
that satisfy the above property, where a denotes the complement of set a.

First, we can assume without loss of generality that ti = si ∪ si+1. In fact, ti =
si ∪ si+1 is the largest possible set that does not intersect si ∪ si+1 while having the 
most intersections with all other sets in S (which is the best possible situation since 
Mij > 0 for i 	= j, j + 1).
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For the same reason as in Corollary 1, since the rows and columns of M have different 
sparsity patterns, we have that

(C1) S = {s1, s2, . . . , sn} is an antichain.
(C2) T = {s1 ∪ s2, s2 ∪ s3, . . . , sn−1 ∪ sn, sn ∪ s1} is an antichain, since taking the 

complement of all the sets in an antichain gives another antichain of the same size.
(C3) Every set si ⊆ {1, 2, . . . , r} contains at least one element not in the sets tj =

sj ∪ sj+1 for j, j + 1 	= i, since Mij > 0 for i 	= j, j + 1.

Theorem 2. Let S and T satisfy (C1–C3) and r ≥ 2. Then

n ≤ r − �r/2�
r − 1

(
r

�r/2�

)
.

Proof. Let us denote ki the number of elements in si, zi the number of additional el-
ements in ti compared to si (that is, |ti| = ki + zi) and z′i the number of additional 
elements in ti−1 compared to si (that is, |ti−1| = ki + z′i). Following the same argument 
as in Theorem 1, we have that the number of permutations with the elements of si in 
the first positions is given by ki!(r − ki)!, of ti by (ki + zi)!(r − ki − zi)!, and of ti−1 by 
(ki + z′i)!(r− ki − z′i)!. However, between si and ti, there are ki!zi!(r− ki − zi)! common 
permutations (and similarly between si and ti−1). Note that these are the only possi-
ble repetitions because of (C3). Note also that |ti| = ki + zi = ki+1 + z′i+1 hence the 
number of permutations corresponding to ti are also equal to 1/2(ki!zi!(r − ki − zi)! +
ki+1!zi+1!(r − ki+1 − zi+1)). Counting all permutations corresponding to si and ti for 
1 ≤ i ≤ n and accounting for the repetitions, we get

n∑
i=1

ki!(r − ki)! + 1
2(ki + zi)!(r − ki − zi)! + 1

2(ki + z′i)!(r − ki − z′i)!

− ki!zi!(r − ki − zi)! − ki!z′i!(r − ki − z′i)! ≤ r!.

Let us find a lower bound for the left hand side of the above inequality. To do so, we 
minimize over each term of the sum independently. Noting that zi and z′i have exactly 
the same role, we can assume without loss of generality that zi = z′i at a minimum. 
Removing the index i for simplicity, we therefore have to evaluate

min
k≥1,z≥1,k+z≤r

k!(r − k)! + (k + z)!(r − k − z)! − 2k!z!(r − k − z)!.

In Appendix A, we show that k∗ = �r/2� and z∗ = 1 is an optimal solution. Therefore, 
dividing the inequality above by r! and using our lower bound for each term (replacing 
the ki’s with �r/2� and the zi’s with 1), we obtain
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n

⎛
⎜⎜⎜⎜⎝
(

r

�r/2�

)−1

+
(

r

�r/2�

)−1 �r/2� + 1
r − �r/2�︸ ︷︷ ︸( r

�r/2�+1
)−1

(
1 − 2 1

�r/2� + 1

)
⎞
⎟⎟⎟⎟⎠ ≤ 1,

from which we get, after simplifications, n ≤ r−�r/2�
r−1

(
r

�r/2�
)
. �

Corollary 3. Let r be the rectangle covering number of the slack matrix of any n-gon for 
n ≥ 2, then

n ≤ r − �r/2�
r − 1

(
r

�r/2�

)
.

Note that the term r−�r/2�
r−1 tends to 1

2 when r grows, and we cannot hope to obtain 
a better bound using our counting argument. In fact, this is the case when there would 
be no repetitions between the permutations generated from the sets in S and T ; see the 
proof of Theorem 2.

The bound from the corollary above also applies to the so-called boolean rank, which is 
the same as the rectangle covering number. Comparing our bound with the upper bounds 
computed in [1, p. 145] for small n, our bound is tight for n = 2 −6, 8 −9, 13 −21, 24 −32
(a − b means from a to b, that is, a, a + 1, . . . , b), which was not the case of the previous 
bound (5) which is tight only for n = 2 − 4.

4. Explicit nonnegative factorization of slack matrices Sn of regular n-gons

In this section, we construct a nonnegative factorization of Sn in a recursive way. 
The idea is the following. At the first step, a rank-two modification of Sn is performed 
so that the pattern of zero entries of the resulting matrix looks like a cross (see below 
for an example on S9). This subdivides the matrix into four blocks exhibiting a lot of 
symmetry, which can be shown to imply that the nonnegative rank of one block is equal 
to the nonnegative rank of the full matrix. Then, the same scheme is applied to that 
subblock until the number of columns of the obtained block B is smaller than four, 
which we factorize with a trivial decomposition B = BI (I being the identity matrix of 
appropriate dimension).

Before we rigorously prove that our construction works for any n-gon, let us illustrate 
the idea on the slack matrix of the regular 9-gon from (3). Observe that the entries of 
the slack matrix on the main diagonal and the diagonal below it are equal to zero. The 
first step of our construction will make a rank-two correction of the slack matrix so that 
the same pattern appears: we remove a matrix from the 4-by-4 lower left block of S9⎛
⎜⎝
c4 c3 c2 c1
c3 c4 c3 c2
c2 c3 c4 c3

⎞
⎟⎠−

⎛
⎜⎝
c4 − c3 c3 − c2 c2 − c1 c1
c3 − c2 c4 − c1 c3 c2
c2 − c1 c3 c4 c3 − c1

⎞
⎟⎠ =

⎛
⎜⎝
c3 c2 c1 0
c2 c1 0 0
c1 0 0 c1
0 0 c c

⎞
⎟⎠ ,
c1 c2 c3 c4 c1 c2 c3 − c1 c4 − c2 1 2
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and another matrix from the positive 4-by-4 block of S9 at the upper right (rows 2 to 5, 
last 4 columns)

⎛
⎜⎝
c4 c3 c2 c1
c3 c4 c3 c2
c2 c3 c4 c3
c1 c2 c3 c4

⎞
⎟⎠−

⎛
⎜⎝
c4 − c2 c3 − c1 c2 c1
c3 − c1 c4 c3 c2 − c1

c2 c3 c4 − c1 c3 − c2
c1 c2 − c1 c3 − c2 c4 − c3

⎞
⎟⎠ =

⎛
⎜⎝
c2 c1 0 0
c1 0 0 c1
0 0 c1 c2
0 c1 c2 c3

⎞
⎟⎠ .

Clearly, the removed matrices are nonnegative since 0 ≤ ck−1 ≤ ck for all 0 ≤ k ≤ �n
2 �. 

Moreover, we show in the next lemma that they have rank one.

Lemma 1. The (infinite) matrix
[
cα−i+j − cβ−i−j

]
i∈Z,j∈Z

has rank one for any fixed α ∈ Z, β ∈ Z and n ∈ N>0.

Proof. We have that ck = cos(πn ) − cos((2k + 1)πn ) = 2 sin(k π
n ) sin((k + 1)πn ). Choosing 

any 2 × 2 minor with rows i ∈ {0, x} and columns j ∈ {0, y} (w.l.o.g.), one can check, 
using algebra with a few trigonometric identities, that the determinant of(

cα − cβ cα+y − cβ−y

cα−x − cβ−x cα−x+y − cβ−x−y

)

is equal to zero for any x, y, and any n. �
After these two nonnegative rank-one factors are removed, we obtain

S9−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
c1
c2

c3 − c1
c4 − c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c4−c3
c1

c3−c2
c1

c2−c1
c1
1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
c4 − c2
c3 − c1

c2
c1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1

c2−c1
c1

c3−c2
c1

c4−c3
c1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 c1 c2 c3 c4 c3 c2 c1 0
0 0 c1 c2 c3 c2 c1 0 0
c1 0 0 c1 c2 c1 0 0 c1
c2 c1 0 0 c1 0 0 c1 c2
c3 c2 c1 0 0 0 c1 c2 c3
c3 c2 c1 0 0 0 c1 c2 c3
c2 c1 0 0 c1 0 0 c1 c2
c1 0 0 c1 c2 c1 0 0 c1
0 0 c1 c2 c3 c2 c1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with a pattern of zeros forming a cross. This matrix is highly symmetric and has a lot 
of redundancy: the last four columns (resp. rows) are copies of the first four. Therefore, 
if we had a nonnegative factorization of the 5-by-5 upper left block, then we would have 
a nonnegative factorization of the entire matrix with the same nonnegative rank.

To construct that factorization, we apply our strategy recursively: use a rank-two 
correction to the upper left block to make a cross of zeros appear:
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⎛
⎜⎜⎜⎝

0 c1 c2 c3 c4
0 0 c1 c2 c3
c1 0 0 c1 c2
c2 c1 0 0 c1
c3 c2 c1 0 0

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎝

0 c1 c2 c1 0
0 0 c1 0 0
c1 0 0 0 c1
c1 0 0 0 c1
0 0 c1 0 0

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0 c1 c2
0 0 c1
c1 0 0
c1 0 0
0 0 c1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎝ 1 0 0 0 1

0 1 0 1 0
0 0 1 0 0

⎞
⎟⎠ .

Now, the upper left block has a trivial nonnegative factorization (since it is a 3-by-3 
matrix of rank 3) from which we can eventually derive the following nonnegative factor-
ization for the full matrix S9:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 c1 c2 0 c3 − c1 0 0
0 0 c1 0 c2 0 c4 − c2
c1 0 0 0 c1 0 c3 − c1
c1 0 0 c1 0 0 c2
0 0 c1 c2 0 0 c1
0 0 c1 c2 0 c1 0
c1 0 0 c1 0 c2 0
c1 0 0 0 c1 c3 − c1 0
0 0 c1 0 c2 c4 − c2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 1
0 1 0 1 0 1 0 1 0
0 0 1 0 0 0 1 0 0

c2−c1
c1

1 0 0 0 0 0 1 c2−c1
c1

0 0 0 1 c2−c1
c1

1 0 0 0
c4−c3
c1

c3−c2
c1

c2−c1
c1

1 0 0 0 0 0
0 0 0 0 0 1 c2−c1

c1
c3−c2
c1

c4−c3
c1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Remark 1. Once the first two rank-one factors have been removed from S9, the 5-by-5 
block could also directly be trivially factorized, and we would obtain

S9 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 c1 c2 c3 c4 0 0
0 0 c1 c2 c3 0 c4 − c2
c1 0 0 c1 c2 0 c3 − c1
c2 c1 0 0 c1 0 c2
c3 c2 c1 0 0 0 c1
c3 c2 c1 0 0 c1 0
c2 c1 0 0 c1 c2 0
c1 0 0 c1 c2 c3 − c1 0
0 0 c1 c2 c3 c4 − c2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0

c4−c3
c1

c3−c2
c1

c2−c1
c1

1 0 0 0 0 0
0 0 0 0 0 1 c2−c1

c1
c3−c2
c1

c4−c3
c1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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For n even, the construction slightly changes because the symmetry in the residual 
with the cross pattern of zeros is different. Let us illustrate it for n = 6. The first rank-two 
correction is the same as for n = 9 and we obtain

S6 =

⎛
⎜⎜⎜⎜⎝

0 c1 c2 c2 c1 0
0 0 c1 c2 c2 c1
c1 0 0 c1 c2 c2
c2 c1 0 0 c1 c2
c2 c2 c1 0 0 c1
c1 c2 c2 c1 0 0

⎞
⎟⎟⎟⎟⎠ → R6 =

⎛
⎜⎜⎜⎜⎝

0 c1 c2 c2 c1 0
0 0 c1 c1 0 0
c1 0 0 0 0 c1
c2 c1 0 0 c1 c2
c1 0 0 0 0 c1
0 0 c1 c1 0 0

⎞
⎟⎟⎟⎟⎠ . (6)

However, the fourth row of R6 is not a copy of the first three. Therefore, we need to keep 
it: factorizing the following submatrix

R′
6 =

⎛
⎜⎝

0 c1 c2
0 0 c1
c1 0 0
c2 c1 0

⎞
⎟⎠

allows to factor R6 (last three columns and last two rows are duplicates). Since it is a 
4-by-3 matrix, we can factor it trivially as R′

6 = R′
6I3 and obtain a rank-5 nonnegative 

factorization of S6.
In summary,

• At the recursion steps, the factorization of the remaining k-by-l block (k = l or 
l+ 1) is computed via a nonnegative rank-two correction and the factorization of its 
�k′�-by-� l

2� upper left block where k′ = � l
2� + 1 when k = l is even and k′ = � l

2�
otherwise.

• At the last step, when k ≤ 4, a trivial factorization is used. Note that there will be 
four ‘basic’ cases: 3-by-3 (e.g., for n = 5, 9), 4-by-3 (e.g., for n = 6), 4-by-4 (e.g., 
n = 4, 7), and 3-by-2 (e.g., for n = 10).

In the recursion steps described above, from a large matrix with c columns, a subma-
trix with � c

2� columns is extracted, and the nonnegative rank of the larger matrix cannot 
be larger than that of the submatrix plus two (because of the two nonnegative rank-one 
corrections). This leads to the following result:

Theorem 3. For any n ≥ 2, the nonnegative rank of any slack matrix Sn of the regular 
n-gon is bounded as follows:

rank+(Sn) ≤
{

2�log2(n)� − 1 = 2k − 1 for 2k−1 < n ≤ 2k−1 + 2k−2,

2�log2(n)� = 2k for 2k−1 + 2k−2 < n ≤ 2k.

(7)
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Proof. Let us first assume that the recursion described above is correct, that is, that 
at each step the number of columns c is decreased to � c

2� while the nonnegative rank is 
increased by at most 2, unless c ≤ 4 in which case we use the trivial factorization of rank c. 
To verify that (7) holds, we observe that the function � c

2� is nondecreasing in c hence it 
suffices to verify that the upper bound holds for the critical values 2k, 2k−1+1, 2k−1+2k−2

and 2k−1+2k−2+1 for any k. For n = 2k, we check that the recursion divides the number 
of column by two at each step until the number of columns is equal to four which gives 
rank+(Sn) ≤ 2 log2(n). For n = 2k−1 + 1, the number of columns c = 2p + 1 for some p
is reduced at each step to �c/2� = 2p−1 + 1. After k − 2 steps, we get a 3-by-3 matrix 
which gives rank+(Sn) ≤ 2(k − 2) + 3 = 2k − 1. For n = 2k−1 + 2k−2, after k − 2 steps, 
the number of columns is equal to 3 hence we obtain rank+(Sn) ≤ 3 +2(k− 2) = 2k− 1; 
the case n = 2k−1 + 2k−2 + 1 is similar to that above.

Let us now prove the recursion. To understand the proof, we encourage the reader to 
also look at the (short) MATLAB code in Appendix B that constructs the factorizations.4

Let B be the k-by-l upper left block of the slack matrix Sn, where k = l or l + 1 and 
1 ≤ k, l ≤ n. Note that, at the first step, k = l = n.

Basic step. If l ≤ 4, B is trivially factorized, that is, B = BIl where Il is the l-by-l
identity matrix.

Recursion step. If we show that

rank+(B) ≤ 2 + rank+(B′),

where B′ is the k′-by-�l/2� upper left block of B, where k′ = �k/2� except when k = l is 
even in which case k′ = �k/2� +1 = l/2 +1, then the proof will be complete, by recursion 
(since B′ is also a k′-by-l′ upper left block of the slack matrix Sn where l′ = �l/2� and 
k′ = l′ or l′ + 1).

Since B is the upper left block of Sn, it is a circulant matrix and has the following 
form

B =

⎛
⎜⎜⎝

c0 c1 . . . c−1+l

c−1 c0 . . . c−2+l

...
... . . .

...
c−k+1 c−k+2 . . . c−k+l

⎞
⎟⎟⎠ = [c−i+j ]1≤i≤k,1≤j≤l ,

where the ck’s are given by (2). The recursion works as follows. First, we subdivide the 
matrix B into four blocks: (i) the upper left �l/2�-by-�l/2� block, (ii) the upper right 
�l/2�-by-�l/2� block, (iii) the lower left (k − �l/2�)-by-�l/2� block, and (iv) the lower 
right (k−�l/2�)-by-�l/2� block. (Note that k−�l/2� = �l/2� +k− l which will be useful 
later.) Then, we make a nonnegative rank-one correction to the upper right and lower 

4 Note that we have numerically checked the correctness of the construction for all n ≤ 10000.
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left blocks so that the off-diagonal entries of B and the entries below are set to zero, 
that is, all entries (i, j) of B such that i + j = l + 1 or i + j = l + 2 will be set to zero. 
(Note that the entries (i, j) of B such that i = j or i = j + 1 are already equal to zero.)

Upper right block. Let p = �l/2� and consider the p-by-p upper right block of B

U =

⎛
⎜⎜⎝

cl−p cl−p+1 . . . cl−1
cl−p−1 cl−p . . . cl−2

...
... . . .

...
cl−2p+1 cl−2p+2 . . . cl−p

⎞
⎟⎟⎠ = [c−i+j ]1≤i≤p,l−p+1≤j≤l

= [c−i+h+l−p]1≤i≤p,1≤h=j−l+p≤p ,

from which we remove the matrix U − [c1+p−i−j ]1≤i≤p,1≤j≤p which is equal to

⎛
⎜⎜⎝

cl−p − cp−1 cl−p+1 − cp−2 . . . cl−1 − c0
cl−p−1 − cp−2 cl−p − cp−3 . . . cl−2 − c−1

...
... . . .

...
cl−2p+1 − c0 cl−2p+2 − c−1 . . . cl−p − c−p+1

⎞
⎟⎟⎠ = [cα−i+j − cβ−i−j ]1≤i≤p,1≤j≤p ,

where α = l − p and β = 1 + p. By Lemma 1, that matrix has rank-one. Moreover, it is 
nonnegative because for all 1 ≤ i, j ≤ p

cl−	l/2
−i+j = c�l/2�−i+j ≥ c1+	l/2
−i−j

since �l/2� + j ≥ 1 + �l/2� − j for all j. We obtain

[c−i+j+l−p − cα−i+j + cβ−i−j ]1≤i≤p,1≤j≤p =

⎛
⎜⎜⎜⎜⎝
cp−1 cp−2 . . . c1 0
cp−2 cp−3 . . . 0 0

...
... . . .

...
...

c1 0 . . . cp−4 cp−3
0 0 . . . cp−3 cp−2

⎞
⎟⎟⎟⎟⎠

= [cp+1−i−j ]1≤i≤p,1≤j≤p .

Lower left block. Let p = �l/2� and q = p + k − l = k − �l/2� (= p if k = l, = p + 1 if 
k = l + 1), and consider the q-by-p lower left block of B

L =

⎛
⎜⎜⎝
c−k+q c−k+q+1 . . . c−k+q+p−1

...
... . . .

...
c−k+2 c−k+3 . . . c−k+p+1
c−k+1 c−k+2 . . . c−k+p

⎞
⎟⎟⎠ = [c−i+j ]k−q+1≤i≤k,1≤j≤q

= [c−h−k+q+j ]1≤h=i−k+q≤q,1≤j≤p ,

from which we remove the matrix L − [c1+p−i−j ]1≤i≤q,1≤j≤p which is equal to
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⎛
⎜⎜⎜⎜⎝

c−k+q − cp−1 c−k+q+p − cp−2 . . . c−k+q+p−1 − c0
c−k+q−1 − cp−2 c−k+q − cp−3 . . . c−k+q+p−2 − c−1

...
... . . .

...
c−k+2 − cp−q+1 c−k+3 − cp−q . . . c−k+p+1 − c−q+2
c−k+1 − cp−q c−k+2 − cp−q−1 . . . c−k+p − c−q+1

⎞
⎟⎟⎟⎟⎠

= [cα−i+j − cβ−i−j ]1≤i≤q,1≤j≤p ,

where α = −k+ q = −�l/2� and β = 1 + p = �l/2� + 1, which can be checked to be non-
negative (using the fact that c−k = ck+1, we have cα−i+j = c−α+i−j+1 = c�l/2�+i−j+1 ≥
c�l/2�+1−i−j = cβ−i−j), and has rank-one by Lemma 1. We obtain

[c−i−k+q+j − cα−i+j + cβ−i−j ]1≤i≤q,1≤j≤p

=

⎛
⎜⎜⎜⎜⎝

cp−1 cp−2 . . . c1 0
cp−2 cp−3 . . . 0 0

...
... . . .

...
...

cp−q+1 cp−q(= 0) . . . c−q+3 c−q+2
cp−q(= 0) cp−q−1 . . . c−q+2 c−q+1

⎞
⎟⎟⎟⎟⎠ .

Note that if k = l (that is, p = q), then cp−q−1 = 0, otherwise k = l+ 1 and cp−q+1 = 0.
Finally, putting all the blocks together: the untouched upper left and lower right 

blocks, and the corrected upper right and lower left blocks, we obtain, after a nonnegative 
rank-two correction of B, the following l-by-l matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 c1 c2 . . . c2 c1 0
0 0 c1 . . . c1 0 0
c1 0 0 . . . 0 0 c1
...

...
...

...
...

...
c2 c1 0 . . . 0 c1 c2
c1 0 0 . . . 0 0 c1
0 0 c1 . . . c1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

to which the following row

(0 c1 c2 . . . c2 c1 0)

has to be added when k = l + 1. That matrix has the following properties

• every column is repeated twice except the middle one when l is odd – more precisely, 
the jth and (l − j + 1)th columns are identical for 1 ≤ j ≤ �l/2� –, and

• every row is repeated twice except (i) the first one when k = l, (ii) the (l/2 + 1)th 
when k = l is even, (ii) the middle one when k = l + 1 is odd – more precisely, the 
(i +s)th and (k− i +1)th rows are identical for 1 ≤ i ≤ �k/2�, and s = 0 for k = l+1
and s = 1 for k = l.

This concludes the recursion step, hence the proof. �
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A MATLAB code that generates the slack matrices of regular n-gons and constructs 
the nonnegative factorizations described above for any n is available from

https :/ /sites .google .com /site /exactnmf /regularngons

Tightness of the bound It has to be pointed out that our inspiration for constructing 
the nonnegative factorizations used in Theorem 3 came from factorizations computed by 
our numerical solver [23] available on https :/ /sites .google .com /site /exactnmf/.

Moreover, for n up to 78, the heuristic algorithm developed in [23] was systematically 
able to find a factorization with a rank matching the bound of Theorem 3, and never 
with a smaller rank. This suggests that our upper bound is tight, at least for small n.

5. Conclusion

In this paper, we have first proposed a new lower bound for the rectangle covering 
number of the slack matrix of any n-gon, using a generalization of Sperner’s theorem; 
see Theorem 2 and Corollary 3. We hope that this idea will lead to new lower bounds 
for other types of nonnegative matrices.

Then, we proposed a purely algebraic proof for an upper bound on the extension 
complexity of regular n-gons, based on explicit nonnegative factorizations of the cor-
responding slack matrices; see Theorem 3. This bound slightly improves upon the 
previously best known upper bound from [9] (our improvement essentially comes from 
improving the base case, but we provided a new algebraic proof), and allows us to close 
the gap with the best known lower bound for several n-gons (9 ≤ n ≤ 13, 21 ≤ n ≤ 24; 
see Fig. 2). However, for most n-gons (precisely, for n = 14, 17 ≤ n ≤ 20, 25 ≤ n ≤ 30
and n ≥ 33), a gap subsists between the best known lower and upper bounds. Hence 
it is a direction for further research to seek improvements to these bounds, in order to 
determine the extension complexity of these regular n-gons. Our numerical results sug-
gest that the way to go would be to improve the lower bounds, since our upper bound 
appears to be tight, at least for small n.
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Appendix A. Proof for Theorem 2

The solution k∗ = �r/2� and z∗ = 1 is optimal for

min
k≥1,z≥1,k+z≤r

k!(r − k)! + (k + z)!(r − k − z)! − 2k!z!(r − k − z)!.

Proof. Let us observe the following

• the first (resp. second) term is decreasing when k (resp. k + z) gets closer to r/2;
• the last term is strictly increasing in z hence being minimized in z = 1;
• f(k, z) = f(r−k− z, z). (Note that this implies that, for r even, k∗ = r/2 − 1 is also 

optimal.)

The first two observations imply that, at optimality, the case z ≥ 2 and k + z ≥
�r/2� +1 is not possible, otherwise we would decrease the objective function by decreas-
ing z. In other words, either z∗ = 1 or k + z ≤ �r/2�.
Case 1: z∗ = 1. Since f(k, 1) = f(r − k − 1, 1), we can assume w.l.o.g. that k ≥ �r/2�
since either k or r − k − 1 is larger than �r/2�. Showing that f(k, 1) is increasing for 
�r/2� ≤ k ≤ r − 1, that is, that f(k, 1) ≤ f(k + 1, 1) for k + 1 ≤ r − 1 will prove the 
result:

k!(r − k)! + (k + 1)!(r − k − 1)! − 2k!(r − k − 1)!

≤ (k + 1)!(r − k − 1)! + (k + 2)!(r − k − 2)! − 2(k + 1)!(r − k − 2)!

⇐⇒
k!(r − k)! − 2k!(r − k − 1)! ≤ (k + 2)!(r − k − 2)! − 2(k + 1)!(r − k − 2)!.

Dividing by k! and (r − k − 2)!,

(r − k)(r − k − 1) − 2(r − k − 1) ≤ (k + 2)(k + 1) − 2(k + 1)

which is equivalent to

r2 − 3r + 2 ≤ 2k(r − 1).

Since k ≥ �r/2�, 2k ≥ r − 1 hence the above inequality would be implied by

r2 − 3r + 2 ≤ (r − 1)2 = r2 − 2r + 1 ⇐⇒ r ≥ 1.

Case 2: k+z ≤ �r/2�. We have k′ = r−k−z ≥ �r/2� hence we can reduce this case to the 
case k ≥ �r/2� without loss of generality, since f(k, z) = f(r − k − z, z). For k ≥ �r/2�, 
it is clear that z∗ = 1 is optimal (since in that case the last two terms increase with z) 
so that this case reduces to Case 1 when z∗ = 1. �
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Appendix B. Code for the nonnegative factorization of slack matrices of regular n-gons

% Rank r nonnegative factorization of the slack matrix S_n=UV of the regular
% n-gon generated by the function slack.m, r being equal to
% 2k-1 for 2^{k-1} < n <= 2^{k-1}+2^{k-2} , and
% 2 k for 2^{k-1}+2^{k-2} < n <= 2^{k} .
%
% See A. Vandaele, N. Gillis and F. Glineur,
% "On the Linear Extension Complexity of Regular n-gons", arXiv, 2015.
% If you use the code, please cite the paper.
% See also https://sites.google.com/site/exactnmf/regularngons
%
% This version uses the matrix S as an input with 0(n^2) operations,
% hence is computationally less efficient as factorization.m which
% only requires O(n log(n)).
% However, it is more intuitive to understand the construction and follows
% the proof of the paper above more closely.

function [U,V,R] = NonnegFactoRegnGon(S)

[m,n] = size(S);
if n <= 4 % trivial factorization

U = S;
V = eye(n);
R = S;

else n > 4 % non-trivial factorizations
% Step 1: Create the cross pattern of zeros removing a nonnegative
% rank-two factor
[U,V,R] = offdiag_zeros(S);
% Step 2: Extract the upper left block that has the same nonnegative
% rank as the full residual R (because of symmetry/redundancy)
k1 = ceil(m/2);
if k1 == m/2 && m == n % When m is even and m == n

k1 = k1+1;
end
k2 = ceil(n/2);
% Step 3: Factor the upper left block using recursion
[Ur,Vr] = NonnegFactoRegnGon(S(1:k1,1:k2));
% Step 4: Put everything together using the symmetry
r = size(Ur,2);
U = [U zeros(m,r)];
V = [V; zeros(r,n)];
% Factor V
V(3:end,1:k2) = Vr;
for i = n : -1 : k2+1

V(3:end,i) = V(3:end,n-i+1);
end
% Factor U
U(1:k1,3:end) = Ur;
if m == n % Case 1: R(k1,:)==R(k1+1,:), symmetry is ’perfect’

p = 1;
elseif m == n+1 % Case 2: R(k1-1,:)==R(k1+1,:), symmetry is shifted by one

p = 0;
end
for i = 1 : m-k1

U(k1+i,3:end) = U(k1-i+p,3:end);



238 A. Vandaele et al. / Linear Algebra and its Applications 521 (2017) 217–239
end
end

% Add zeros on off-diagonal entries of matrix S using a rank-two
% correction. The first rank-one factor puts zero entries on the lower left
% block, the second on the upper right block.

function [U,V,R] = offdiag_zeros(S)

[m,n] = size(S);
U = zeros(m,2);
V = zeros(2,n);
k2 = floor(n/2);
% Lower left block
if m == n % zeros below the diagonal (starting from the lower left)

k1 = ceil(n/2);
U(m,1) = S(m,1);

elseif m == n+1 % zeros above the diagonal (starting from the lower left)
k1 = floor(m/2);
U([m-1 m],1) = S([m-1 m],1);

else
error(’The matrix should be n-by-n or n+1-by-n’);

end
V(1,1) = 1;
for i = 2 : k2

V(1,i) = S(n-i+2,i) / U(n-i+2,1);
U(n-i+1,1) = S(n-i+1,i)/ V(1,i);

end
% Upper right block: zeros below the diagonal
% (starting from the upper right)
V(2,n) = 1; U(1,2) = S(1,n);
for i = 2 : k1

U(i,2) = S(i,n-i+2) / V(2,n-i+2);
V(2,n-i+1)= S(i,n-i+1) / U(i,2);

end
% Residual with the pattern of zeros like a cross
R = S - U*V;

The code is available from https :/ /sites .google .com /site /exactnmf /regularngons.
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